Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Unexpected crystallization of 1,3-bis(4-fluorophenyl)propan-2-one in paratone oil

Ilia A. Guzei,* Kristopher J. Kolonko and Hans J. Reich

Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
Correspondence e-mail: iguzei@chem.wisc.edu
Received 12 September 2007; accepted 12 September 2007
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.034 ; w R$ factor $=0.073$; data-to-parameter ratio $=10.1$.

The title compound, $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{O}$, crystallizes in paratone oil as a room-temperature decomposition product of the crystalline air- and moisture-sensitive lithium enolate of $1,3-\mathrm{di}(p$-fluorophenyl)acetone diethyl ether solvate. Such spontaneous crystallization in paratone oil is rare, yet in this case it yielded X-ray quality crystals. The title compound can be prepared directly by a modified procedure of Resendiz \& Garibay [Org. Lett. (2005), 7, 371-374]. The molecular features are typical: the endocyclic angles at the electron-withdrawing F substituent average $123.0(2)^{\circ}$, while the endocyclic angles at the methylene C atom average 118.3 (3) ${ }^{\circ}$. These findings are in excellent agreement with the values of 122.3 and 118.5° computed for the theoretically (DFT, density functional theory) optimized geometry of the title compound.

Related literature

Resendiz \& Garibay (2005) report a direct synthesis of the title compound. Kolonko et al. (2007) report the synthesis and characterization of a Li salt that, upon decomposition, yields the title compound. For details of the software used for the computational calculations, see Frisch et al. (2004).

Experimental

Crystal data
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{O}$
$M_{r}=246.25$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$V=1206.9$ (2) \AA^{3}
$Z=4$
$a=4.5204$ (5) £
$b=11.3606$ (14) \AA
$c=23.501$ (3) A

Data collection

Bruker SMART 1000 CCD areadetector diffractometer
Absorption correction: multi-scan SADABS (Bruker, 2007)
$T_{\text {min }}=0.950, T_{\text {max }}=0.990$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034 \quad 163$ parameters
$w R\left(F^{2}\right)=0.073$
$S=1.00$
1643 reflections

Mo $K \alpha$ radiation
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=100(2) \mathrm{K}$
$0.50 \times 0.10 \times 0.10 \mathrm{~mm}$

15238 measured reflections 1643 independent reflections 1210 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.100$

Data collection: SMART (Bruker, 2000); cell refinement: SAINTPlus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Bruker, 2007); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, publCIF (Westrip, 2007) and modiCIFer (Guzei, 1995).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2068).

References

Bruker (2000). SMART. Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2007). SADABS (Version 2007/4), SAINT-Plus (Version 7.24A) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Frisch, M. J. et al. (2004). GAUSSIAN03. Revision C.02. Gaussian Inc., Wallingford, Connecticut, USA.
Guzei, I. A. (1995). modiCIFer. University of Wisconsin-Madison, USA.
Kolonko, K. J., Reich, H. J., Biddle, M. \& Guzei, I. A. (2007). In preparation.
Resendiz, M. J. E. \& Garibay, M. A. (2005). Org. Lett. 7, 371-374.
Westrip, S. P. (2007). publCIF. In preparation.

supplementary materials

Acta Cryst. (2007). E63, o4094 [doi:10.1107/S1600536807044704]

Unexpected crystallization of 1,3-bis(4-fluorophenyl)propan-2-one in paratone oil

I. A. Guzei, K. J. Kolonko and H. J. Reich

Comment

This paper documents an unusual fact of spontaneous crystallization of the title compound in paratone oil. Crystals of the air- and moisture-sensitive lithium enolate of 1,3-di(p-fluorophenyl)acetone ether solvate (Fig.1) were examined under ambient conditions in paratone oil to select a crystal suitable for an X-ray single-crystal diffraction experiment (Kolonko et al., 2007). During the 22 -hour data acquisition on the lithium enolate the glass slide with the crystals was left under air. By the next day the crystals decomposed to yield crystals of the title compound propagating from them as thin needles (Fig. 2). Such spontaneous crystallization in paratone oil is rare, yet in this case it yielded X-ray quality crystals. The title compound, Fig. 3, can be prepared directly by a modified procedure of Resendiz \& Garibay (2005). Its molecular features of are typical: the endocyclic angles at the electron-withdrawing F substituent average $123.0(2)^{\circ}$ while the endocyclic angles at the methylene carbon atom average $118.3(3)^{\circ}$. These findings are in excellent agreement with the values of 122.3 and 118.5° computed for the theoretically (DFT) optimized geometry of (I) at the b3lyp/6-31+G* level of theory (Frisch et al., 2004).

Experimental

1,3-Di(p-fluorophenyl)acetone (prepared using a modified procedure from Resendiz \& Garibay (2005)): 4Fluorophenylacetic acid ($4.14 \mathrm{~g}, 26.8 \mathrm{mmol}$), 4-(dimethylamino)pyridine (3.53 g, 28.8 mmol), N-ethyl- N^{N}-(3dimethylaminopropyl)carbodiimide hydrochloride (EDCI $\cdot \mathrm{HCl})(5.00 \mathrm{~g}, 26.0 \mathrm{mmol})$ and 80 ml of dichloromethane were added to a 250 ml round bottom flask. The solution was stirred for four days at room temperature, after which 100 ml of $10 \% \mathrm{HCl}$ solution was added. The organic layer was separated, washed with $10 \% \mathrm{HCl}$ twice, saturated NaHCO_{3} once, dried over MgSO_{4} and the solvent was removed by vacuum. The resulting solid was recrystallized from aqueous ethanol to yield $2.35 \mathrm{~g}(73.5 \%)$ of the title compound. Melting Point $335-337 \mathrm{~K} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 3.69(\mathrm{~s}, 4 \mathrm{H}), 6.99(\mathrm{~m}$, $4 \mathrm{H}), 7.09(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 48.4(\mathrm{~s}), 115.8(\mathrm{~d}, \mathrm{~J}=21.5 \mathrm{~Hz}), 129.7(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}), 131.2(\mathrm{~d}, \mathrm{~J}=7.8$ $\mathrm{Hz}), 162.2(\mathrm{~d}, \mathrm{~J}=246.6 \mathrm{~Hz}), 205.3(s) .{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-116(\mathrm{tt}, \mathrm{J}=5.5,8.8 \mathrm{~Hz}) . \mathrm{HRMS}(\mathrm{EI})(\mathrm{m} / \mathrm{z}): ~ c a l c d$. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{OF}_{2}(M+)$ 246.0856; found 246.0860 .

Lithium enolate of 1,3-di(p-fluorophenyl)acetone ether solvate: 1,3-di(p-fluorophenyl)acetone ($0.29 \mathrm{~g}, 1.19 \mathrm{mmol}$) was placed in a 15 ml conical vial, dissolved in 1 ml of diethylether and cooled to 273 K . Diisopropylamine ($0.2 \mathrm{ml}, 1.41 \mathrm{mmol}$) and 2 ml of diethyl ether were placed in to a flame dried and argon purged 5 ml round bottom flask and cooled to 195 K . $\mathrm{nBuLi}(0.53 \mathrm{ml}, 1.32 \mathrm{mmol})$ was added and the solution was warmed to 273 K for 5 minutes. The freshly prepared lithium diisopropylamide (LDA) was added to the conical vial via cannula at 273 K and the flask was shaken to mix the reactants. The solution was allowed to warm to room temperature for 30 minutes and then cooled to 253 K . Upon sitting overnight crystals formed.

The crystal of the title compound chosen for the X-ray structural characterization was selected from the paratone oil 24 h after crystals of the lithium enolate were immersed in it. Thus, the title compound is a decomposition product of the lithium enolate under ambient conditions in paratone oil.

supplementary materials

Refinement

All H -atoms were placed in idealized locations and refined as riding with appropriate thermal displacement coefficients $U_{\text {iso }}(\mathrm{H})=1.2$ or 1.5 times $U_{\text {eq }}$ (bearing atom).

Figures

Fig. 1. Crystals of the lithium enolate of 1,3-di(p-fluorophenyl)acetone ether solvate freshly isolated from mother liquor.

Fig. 2. Crystals of the title compound are the clear needles growing from the decomposed crystals of the lithium enolate.

1,3-bis(4-fluorophenyl)propan-2-one

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{O} \\
& M_{r}=246.25
\end{aligned}
$$

Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Hall symbol: P 2ac 2ab
$a=4.5204$ (5) \AA
$b=11.3606$ (14) \AA
$c=23.501$ (3) \AA
$V=1206.9(2) \AA^{3}$
$Z=4$

Data collection

Bruker CCD-1000 area-detector

diffractometer

Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=100(2) \mathrm{K}$
$F_{000}=512$
$D_{\mathrm{x}}=1.355 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 2606 reflections
$\theta=2.5-22.9^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=100$ (2) K
Needle, colourless
$0.50 \times 0.10 \times 0.10 \mathrm{~mm}$

$$
0.30^{\circ} \omega \text { and } 0.4^{\circ} \varphi \text { scans }
$$

Absorption correction: multi-scan SADABS (Bruker, 2007)
$T_{\min }=0.950, T_{\max }=0.990$
15238 measured reflections
$\theta_{\min }=1.7^{\circ}$
$h=-5 \rightarrow 5$
$k=-14 \rightarrow 14$
$l=-30 \rightarrow 30$

Refinement

Refinement on F^{2}
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0301 P)^{2}\right]$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
where $P=\left(F_{\mathrm{o}}^{2}+2{F_{\mathrm{c}}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$w R\left(F^{2}\right)=0.073$
$S=1.00$
1643 reflections
$\Delta \rho_{\max }=0.19 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.17$ e \AA^{-3}

163 parameters
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring
sites

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
F1	$-0.1730(3)$	$0.96475(11)$	$0.68798(5)$	$0.0339(4)$
F2	$0.0973(4)$	$0.40877(12)$	$1.10857(5)$	$0.0467(5)$
O1	$0.2673(4)$	$0.71247(12)$	$0.89696(6)$	$0.0238(4)$
C1	$0.3178(5)$	$0.88445(17)$	$0.80243(8)$	$0.0206(5)$
H1	0.3875	0.9158	0.8374	0.025^{*}
C2	$0.1182(5)$	$0.94850(18)$	$0.77045(9)$	$0.0224(5)$
H2	0.0472	1.0225	0.7834	0.027^{*}
C3	$0.0252(5)$	$0.90235(19)$	$0.71955(9)$	$0.0239(5)$
C4	$0.1244(5)$	$0.79668(18)$	$0.69894(9)$	$0.0243(6)$
H4	0.0597	0.7677	0.6631	0.029^{*}
C5	$0.3225(5)$	$0.73345(18)$	$0.73208(8)$	$0.0216(5)$

H5	0.3939	0.6599	0.7186	0.026^{*}
C6	$0.4188(5)$	$0.77487(18)$	$0.78442(8)$	$0.0189(5)$
C7	$0.6201(5)$	$0.70229(18)$	$0.82110(8)$	$0.0214(5)$
H7A	0.8014	0.7483	0.8291	0.026^{*}
H7B	0.6796	0.6311	0.7997	0.026^{*}
C8	$0.4829(5)$	$0.66449(19)$	$0.87723(9)$	$0.0195(5)$
C9	$0.6399(5)$	$0.56467(18)$	$0.90711(8)$	$0.0251(6)$
H9A	0.6545	0.4973	0.8805	0.030^{*}
H9B	0.8438	0.5902	0.9163	0.030^{*}
C10	$0.4930(5)$	$0.52336(18)$	$0.96098(8)$	$0.0206(5)$
C11	$0.3181(5)$	$0.42347(18)$	$0.96131(9)$	$0.0236(5)$
H11	0.2909	0.3806	0.9270	0.028^{*}
C12	$0.1816(6)$	$0.38470(19)$	$1.01073(9)$	$0.0288(6)$
H12	0.0600	0.3165	1.0108	0.035^{*}
C13	$0.2279(6)$	$0.4481(2)$	$1.05949(9)$	$0.0293(6)$
C14	$0.3959(6)$	$0.54752(19)$	$1.06119(9)$	$0.0306(6)$
H14	0.4210	0.5898	1.0957	0.037^{*}
C15	$0.5291(5)$	$0.58556(19)$	$1.01147(9)$	$0.0264(6)$
H15	0.6465	0.6549	1.0118	0.032^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	$0.0310(9)$	$0.0389(7)$	$0.0318(7)$	$0.0070(7)$	$-0.0021(7)$	$0.0133(6)$
F2	$0.0688(12)$	$0.0433(9)$	$0.0280(8)$	$0.0117(9)$	$0.0180(8)$	$0.0118(6)$
O1	$0.0235(10)$	$0.0256(8)$	$0.0222(8)$	$0.0052(8)$	$0.0033(7)$	$0.0004(6)$
C1	$0.0229(14)$	$0.0192(10)$	$0.0198(11)$	$-0.0047(10)$	$0.0013(10)$	$-0.0009(9)$
C2	$0.0229(14)$	$0.0176(11)$	$0.0266(12)$	$-0.0004(10)$	$0.0067(10)$	$0.0032(9)$
C3	$0.0186(13)$	$0.0284(12)$	$0.0246(12)$	$0.0000(11)$	$0.0003(10)$	$0.0117(10)$
C4	$0.0263(15)$	$0.0282(12)$	$0.0183(11)$	$-0.0044(11)$	$0.0006(10)$	$0.0025(9)$
C5	$0.0229(14)$	$0.0207(11)$	$0.0213(11)$	$-0.0026(11)$	$0.0050(10)$	$-0.0003(9)$
C6	$0.0168(13)$	$0.0203(11)$	$0.0196(10)$	$-0.0028(10)$	$0.0044(9)$	$0.0039(9)$
C7	$0.0216(14)$	$0.0222(11)$	$0.0204(11)$	$-0.0004(10)$	$0.0019(10)$	$-0.0008(9)$
C8	$0.0173(15)$	$0.0203(11)$	$0.0207(11)$	$-0.0027(10)$	$-0.0015(11)$	$-0.0021(9)$
C9	$0.0221(15)$	$0.0268(12)$	$0.0264(12)$	$0.0044(11)$	$0.0024(10)$	$0.0052(10)$
C10	$0.0194(14)$	$0.0211(11)$	$0.0214(11)$	$0.0050(10)$	$0.0006(11)$	$0.0028(9)$
C11	$0.0298(15)$	$0.0219(11)$	$0.0191(10)$	$0.0034(11)$	$-0.0008(10)$	$-0.0015(9)$
C12	$0.0337(17)$	$0.0211(11)$	$0.0318(13)$	$-0.0033(12)$	$0.0026(12)$	$0.0037(10)$
C13	$0.0388(17)$	$0.0302(13)$	$0.0188(11)$	$0.0115(12)$	$0.0054(11)$	$0.0072(10)$
C14	$0.0421(18)$	$0.0300(13)$	$0.0197(11)$	$0.0049(12)$	$-0.0059(11)$	$-0.0045(10)$
C15	$0.0296(16)$	$0.0204(12)$	$0.0291(12)$	$0.0004(11)$	$-0.0044(11)$	$-0.0006(10)$

Geometric parameters ($\AA,{ }^{\circ}$)

F1-C3	$1.362(2)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	0.9900
$\mathrm{~F} 2-\mathrm{C} 13$	$1.371(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.511(3)$
$\mathrm{O} 1-\mathrm{C} 8$	$1.209(3)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.505(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.381(3)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	0.9900
$\mathrm{C} 1-\mathrm{C} 6$	$1.392(3)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	0.9900

sup-4

supplementary materials

C1-H1	0.9500
C2-C3	1.372 (3)
C2-H2	0.9500
C3-C4	1.370 (3)
$\mathrm{C} 4-\mathrm{C} 5$	1.387 (3)
C4-H4	0.9500
C5-C6	1.387 (3)
C5-H5	0.9500
C6-C7	1.500 (3)
C7-C8	1.520 (3)
C7-H7A	0.9900
C2-C1-C6	121.3 (2)
C2-C1-H1	119.3
C6-C1-H1	119.3
C3-C2-C1	118.24 (19)
C3-C2-H2	120.9
C1-C2-H2	120.9
F1-C3-C4	118.6 (2)
F1-C3-C2	118.52 (19)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	122.9 (2)
C3-C4-C5	117.8 (2)
C3-C4-H4	121.1
C5-C4-H4	121.1
C4-C5-C6	121.7 (2)
C4-C5-H5	119.2
C6-C5-H5	119.2
C5-C6-C1	118.0 (2)
C5-C6-C7	120.90 (19)
C1-C6-C7	121.05 (19)
C6-C7-C8	114.0 (2)
C6-C7-H7A	108.8
C8-C7-H7A	108.8
C6-C7-H7B	108.8
C8-C7-H7B	108.8
H7A-C7-H7B	107.7
O1-C8-C9	122.59 (19)
O1-C8-C7	122.3 (2)
C6- $1-\mathrm{C} 2-\mathrm{C} 3$	-1.2 (3)
C1-C2-C3-F1	179.59 (19)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-0.8 (3)
F1-C3-C4-C5	-178.96(19)
C2-C3-C4-C5	1.5 (3)
C3-C4-C5-C6	0.0 (3)
C4-C5-C6-C1	-1.9 (3)
C4-C5-C6-C7	176.6 (2)
C2-C1-C6-C5	2.6 (3)
C2-C1-C6-C7	-176.0 (2)
C5-C6-C7-C8	-115.5 (2)

$\mathrm{C} 10-\mathrm{C} 11$	$1.383(3)$
$\mathrm{C} 10-\mathrm{C} 15$	$1.391(3)$
$\mathrm{C} 11-\mathrm{C} 12$	$1.387(3)$
$\mathrm{C} 11-\mathrm{H} 11$	0.9500
$\mathrm{C} 12-\mathrm{C} 13$	$1.370(3)$
$\mathrm{C} 12-\mathrm{H} 12$	0.9500
$\mathrm{C} 13-\mathrm{C} 14$	$1.361(3)$
$\mathrm{C} 14-\mathrm{C} 15$	$1.384(3)$
$\mathrm{C} 14-\mathrm{H} 14$	0.9500
$\mathrm{C} 15-\mathrm{H} 15$	0.9500

C9-C8-C7 115.1 (2)
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8 \quad 114.70$ (19)
C10-C9-H9A 108.6
C8-C9-H9A 108.6
C10-C9-H9B 108.6
C8-C9—H9B 108.6
H9A-C9—H9B 107.6
C11-C10-C15 118.64 (19)
C11-C10-C9 120.86 (18)
$\mathrm{C} 15-\mathrm{C} 10-\mathrm{C} 9 \quad 120.5$ (2)
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12 \quad 121.31$ (19)
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{H} 11 \quad 119.3$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{H} 11 \quad 119.3$
C13-C12-C11 117.7 (2)
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{H} 12 \quad 121.1$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12 \quad 121.1$
C14-C13-C12 123.1 (2)
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{F} 2 \quad 119.09$ (19)
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{F} 2 \quad 117.8$ (2)
C13-C14-C15 118.5 (2)
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{H} 14 \quad 120.8$
$\mathrm{C} 15-\mathrm{C} 14-\mathrm{H} 14 \quad 120.8$
C14-C15-C10 120.7 (2)
C14-C15-H15 119.6
$\mathrm{C} 10-\mathrm{C} 15-\mathrm{H} 15 \quad 119.6$
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10 \quad 4.6$ (3)
C7-C8-C9-C10 -176.77 (19)
C8-C9-C10-C11 100.0 (2)
C8-C9-C10-C15 -79.6(3)
$\mathrm{C} 15-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12 \quad-0.4$ (3)
C9-C10-C11-C12 -180.0 (2)
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13 \quad-0.6$ (4)
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14 \quad 1.2$ (4)
C11-C12-C13-F2
-178.9 (2)
-0.8 (4)
F2-C13-C14-C15
179.3 (2)

supplementary materials

$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$63.1(3)$	$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 10$	$-0.2(4)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{O} 1$	$-18.2(3)$	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 15-\mathrm{C} 14$	$0.8(3)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$163.18(18)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 15-\mathrm{C} 14$	$-179.6(2)$

Fig. 1

supplementary materials

Fig. 2

Fig. 3

